MODIS/Aqua Evaluations

Chuck McClain
Gene Feldman

OCDP Staff

NASA/GSFC

NASA Ocean Color Research Team Meeting April 14-16, 2004

Washington, DC

MODIS Processing Strategy

- Initial focus on MODIS/Aqua
 - MODIS/Aqua more stable than MODIS/Terra
 - MODIS/Aqua overlap with NPP/VIIRS
- Initial emphasis on calibration & Lwn's
 - Large seasonal/regional differences between MODIS/(Terra & Aqua) & SeaWiFS Lwn's
- Reduced product set until radiometry verified
 - Simplify processing for radiometry evaluations
 - Maintain a baseline consistent with SeaWiFS product suite. Expand product suite later.

MODIS Ocean Color Parameters

Previous OC Parameter Set

- Normalized water-leaving radiances (7)
- Aerosol optical thickness (865 nm)
- Atmospheric correction epsilon
- Aerosol model numbers (2)
- Clear water aerosol correction epsilon
- CZCS pigment concentration
- Chlorophyll-a concentration (3)
- Total pigment concentration
- Chlorophyll fluorescence line height
- Chlorophyll fluorescence baseline
- Chlorophyll fluorescence efficiency
- Total suspended matter
- Coccolithophore pigment concentration
- Detached coccolithophore concentration
- Calcite concentration
- Diffuse attenuation at 490 nm
- Phycoerythobilin concentration
- Phycourobilin concentration
- Instantaneous PAR
- Instantaneous absorbed radiation for fluorescence
- Gelbstoff absorption coefficient at 400 nm
- Phytoplankton absorption coefficient at 675 nm
 Total absorption coefficients (5)
 - Primary production (2 at Level-4)

• Current OC Parameter Set

- Normalized water-leaving radiances (6)
- Aerosol optical thickness
- Atmospheric correction epsilon
- Ångström exponent
- Chlorophyll-a (1)
- Diffuse attenuation coefficient at 490 nm

Previous OC Parameter Set 38 (does not include archived ancillary data &

(does not include archived ancillary data & quality control fields)

Current OC Parameter Suite 11 (does not include archived ancillary data)

Evaluation Approach

- Apply same cal/val approach as for SeaWiFS
- Use common processing codes
- Work sensor calibration issues with MCST
 - Solar and lunar calibration analysis and products, e.g., calibration tables, response-vs-scan (RVS), sensor polarization.
- Systematically test algorithms using both SeaWiFS & MODIS for comparison
 - Polarization, BRDF, glint, cloud masking, etc.
 - Global time series with regional analyses (clearwater, deep-water, coastal, basin-latitude zones)

SeaWiFS Calibration Strategy

MODIS/SeaWiFS Comparisons

- MODIS polarization correction
 - Original tables
 - No correction
 - Phase-shifted tables

- MODIS polarization tables based on prelaunch characterization table.
- SeaWiFS essentially polarization insensitive.
- Phase-shifted and approximately 2X-amplitude tables
- BRDF correction (based on Morel et al., 2002)
 - Fresnel-only (flat surface; no wind speed dependence)
 - Morel \Re (wind speed dependent)
 - Morel \Re and f/Q
- Other
 - Sunglint radiance threshold
 - Cloud mask threshold

Lwn: MODIS/SeaWiFS Ratios

MODIS(Aqua)/SeaWiFS Lwn Ratios (N. Pacific): Original polarization correction

MODIS(Aqua)/SeaWiFS Lwn Ratios (N. Pacific): No polarization correction

MODIS(Aqua)/SeaWiFS Lwn Ratios (N. Pacific): Correct polarization (corrected phase & magnitude)

SeaWiFS & MODIS 4-Day Deep-Water Chlorophyll Images

4 day composites, Summer 2002

$0.01-1 \text{ mg/m}^3$

SeaWiFS

MODIS
(Correct polarization phase & amplitude)

SeaWiFS Lw ODPS R4

MODIS/Aqua Lw ODPS R1

ODPS R4 OC4 Chlorophyll

10^{2} chlorophyll 10^{1} SeaWiFS 10° 10⁻¹ 10^{-2} 10⁻² 10^{-1} 10° 10¹ 10^{2} In Situ

ODPS R1 OC3 Chlorophyll

MODIS/Aqua Reprocessing Recommendations

- Use MCST temporally smoothed calibration tables
- Use phase & magnitude corrected polarization tables
 - Polarization working group to designate final table
 - Working group: Meister, Voss, Walushka, Xiong, Gordon
- Use "Fresnel-only" BRDF correction
 - Bio-optical algorithm working group needs to recommend standard algorithm for BRDF
- Use OC3 chlorophyll-a algorithm
 - Bio-optical algorithm working group needs to recommend standard chlorophyll algorithm for all sensors
- Keep current product set
 - Science team & HQ need to define updated product set

Additional Sensor Calibration Issues

- Temporal stability: long-term and seasonal
- Refine "Response vs. Scan" (RVS) or scan modulation functions
- Minimize mirror-side calibration differences (image banding)
- Detector to detector calibration (striping)

Analyses to be conducted in collaboration with MCST and science community.